Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.041$
$w R$ factor $=0.111$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Allyloxy-2-bromo-3-(3-phenylallyloxy)benzene

The title compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{2}$, possesses normal geometrical parameters. A possible intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is present. The crystal packing is influenced by $\pi-\pi$ stacking.

Comment

The title compound, (I) (Fig. 1), arose during our studies to determine the philicity of aryl radicals by competitive cyclization (Kirsop et al., 2004a,b).

(I)

Compound (I) possesses normal geometrical parameters. A PLATON (Spek, 2003) analysis of (I) indicated that an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) may occur between an exo methylene $\mathrm{C} 1-\mathrm{H} 1 A$ group and acceptor O 1 , which may help to stabilize an essentially planar arrangement of the atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and $\mathrm{O} 1[\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1=$ $\left.-3.0(6)^{\circ}\right]$. The acute $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond angle of 100° is consistent with the intramolecular nature of this interaction.

As well as van der Waals forces, the crystal packing in (I) is influenced by $\pi-\pi$ stacking interactions. Inversion symmetry results in dimeric associations of molecules of (I) with a $\mathrm{C}_{g} \cdots \mathrm{C}_{g}{ }^{i}$ separation of 3.767 (3) $\AA \quad\left[\mathrm{C}_{g}\right.$ is the geometric centroid of atoms C13-C18; symmetry code: (i) $-1-x, 2-y$, $-z]$. The ring planes are exactly parallel and separated by 3.55 (3) \AA. The lateral displacement of $C_{g}{ }^{i}$ relative to the perpendicular from C_{g} to the mean plane for the atoms $\mathrm{C} 13^{i}{ }^{\mathrm{i}}$ $\mathrm{C} 18^{\mathrm{i}}$ is $1.25(8) \AA$. The packing of (I) is shown in Fig. 2.

Figure 1
The molecular structure of (I) (30% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and the possible intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is shown as a dashed lines.

Received 24 May 2004
Accepted 1 June 2004 Online 12 June 2004

Figure 2
The packing in (I) projected on to (100), with $\pi-\pi$ stacking interactions involving the C13-C18 phenyl rings indicated by dashed lines and all $\mathrm{C}-$ H H atoms omitted for clarity (30% displacement ellipsoids).

Experimental

2-Bromobenzene-1,3-diol (Kirsop et al., 2004b; $5.00 \mathrm{~g}, 0.026 \mathrm{~mol}$), allyl bromide ($3.20 \mathrm{~g}, 0.026 \mathrm{~mol}$) and potassium carbonate $(8.00 \mathrm{~g}$, $0.0579 \mathrm{~mol})$ were added to 100 ml of dry acetone. The mixture was stirred at reflux under a nitrogen atmosphere for 3 h . After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil ($4.64 \mathrm{~g}, 78 \%$). Thin-layer chromatography (4:1 hexane-ethyl acetate) showed three sharp spots: at $R_{F}=0.24$ was unreacted starting material, at $R_{F}=0.38$ was 3 -allyloxy-2-bromophenol, and at $R_{F}=0.52$ was 1,3 -bis(allyloxy)-2-bromobenzene. These compounds were separated using flash column chromatography to give 3-allyloxy-2-bromophenol as a clear oil ($1.85 \mathrm{~g}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 4.58\left(2 \mathrm{H}, d, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.30(1 \mathrm{H}, d, J=$ $10.7 \mathrm{~Hz}, \mathrm{CH}), 5.47(1 \mathrm{H}, d J=17.1 \mathrm{~Hz}, \mathrm{CH}) 5.74(1 \mathrm{H}, s, \mathrm{OH}), 6.05(1 \mathrm{H}$, $m, \mathrm{CH}), 6.45(1 \mathrm{H}, d, J=8.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.66(1 \mathrm{H}, d, J=9.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.12(1 \mathrm{H}, t, J=8.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{C} 69.8,100.6,105.0,108.6$, 117.8, 128.6, 132.6, 153.6, 155.5. $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3497,2912,1595$, 1463, 1269, 1192, 1064, 767.

A mixture of 3-allyloxy-2-bromophenol $(2.00 \mathrm{~g}, \quad 0.009 \mathrm{~mol})$, cinnamyl bromide ($2.06 \mathrm{~g}, 0.011 \mathrm{~mol}$) and potassium carbonate (8.0 g , $0.058 \mathrm{~mol})$ was added to dry acetone $(100 \mathrm{ml})$. The mixture was stirred at reflux under a nitrogen atmosphere for 12 h . After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil ($1.92 \mathrm{~g}, 68 \%$). Thin-layer chromatography (4:1 hexane-ethyl acetate) showed 1-allyloxy-2-bromo-3-(3-phenylallyloxy) benzene (I) as a sharp spot at $R_{F}=0.33$. The crude product was purified by flash column chromatography to give (I) as a white powder $(1.56 \mathrm{~g}, 51 \%)$. A sample of this powder was recrystallized from hot hexane-ethyl acetate (20:1) to give translucent rhombs and slabs (m.p. 353-355 K). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 4.58(2 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{2}\right), 4.74\left(2 \mathrm{H}, d, J=3.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.26\left(1 \mathrm{H}, d, J=9.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.44$ $\left(1 \mathrm{H}, d, J=17.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.01-6.08(1 \mathrm{H}, m, \mathrm{CH}), 6.37-6.41(1 \mathrm{H}, m$, $\mathrm{CH}), 6.53(1 \mathrm{H}, d, J=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.58(1 \mathrm{H}, d, J=7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $6.75(1 \mathrm{H}, d, J=9.2 \mathrm{~Hz}, \mathrm{CH}), 7.14(1 \mathrm{H}, t, J=8.1 \mathrm{~Hz}, \mathrm{CH}), 7.23(1 \mathrm{H}, d, J$ $=6.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.29(2 \mathrm{H}, t, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}$, Ar-H). ${ }^{13} \mathrm{C}$ NMR: $\delta_{C} 70.0,70.1,102.7,106.6,106.7,117.8,124.2$ (2 C), 126.8, 128.1, 128.2, 128.8 (2 C), 132.9, 133.1, 136.6, 156.6 (2 C). $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1644,1591,1470,1375,1255,1116,1062,767$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{2}$
$M_{r}=345.23$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=7.2956$ (4) А 。
$b=14.8719$ (8) \AA
$c=14.7849$ (7) \AA
$\beta=95.171$ (1) ${ }^{\circ}$
$V=1597.62(14) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.362, T_{\text {max }}=0.628$
11903 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.058 P)^{2}\right. \\
&+0.1552 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.111$
$S=1.06$
3131 reflections
190 parameters

H -atom parameters constrained
Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.93	2.39	$2.715(5)$	100

All the H atoms were positioned geometrically and refined as riding on their carrier C atoms $\left(\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for aromatic and $s p^{2}$ hybridized C atoms and $\mathrm{C}-\mathrm{H}=0.97 \AA$ for $s p^{3}$-hybridized C atoms) with the the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom) applied.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004a). Acta Cryst. E60, o222o224.
Kirsop, P., Storey, J. M. D. \& Harrison, W. T. A. (2004b). Acta Cryst. C60, o353o355.
Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

