Received 24 May 2004

Accepted 1 June 2004

Online 12 June 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.041 wR factor = 0.111 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Allyloxy-2-bromo-3-(3-phenylallyloxy)benzene

The title compound, $C_{18}H_{17}BrO_2$, possesses normal geometrical parameters. A possible intramolecular $C-H\cdots O$ interaction is present. The crystal packing is influenced by $\pi-\pi$ stacking.

Comment

The title compound, (I) (Fig. 1), arose during our studies to determine the philicity of aryl radicals by competitive cyclization (Kirsop *et al.*, 2004a,b).

Compound (I) possesses normal geometrical parameters. A *PLATON* (Spek, 2003) analysis of (I) indicated that an intramolecular C–H···O interaction (Table 1) may occur between an *exo* methylene C1–H1A group and acceptor O1, which may help to stabilize an essentially planar arrangement of the atoms C1, C2, C3 and O1 [C1–C2–C3–O1 = -3.0 (6)°]. The acute C–H···O bond angle of 100° is consistent with the intramolecular nature of this interaction.

As well as van der Waals forces, the crystal packing in (I) is influenced by $\pi-\pi$ stacking interactions. Inversion symmetry results in dimeric associations of molecules of (I) with a $C_g \cdots C_g^{i}$ separation of 3.767 (3) Å [C_g is the geometric centroid of atoms C13–C18; symmetry code: (i) -1 - x, 2 - y,-z]. The ring planes are exactly parallel and separated by 3.55 (3) Å. The lateral displacement of C_g^{i} relative to the perpendicular from C_g to the mean plane for the atoms C13ⁱ– C18ⁱ is 1.25 (8) Å. The packing of (I) is shown in Fig. 2.

Figure 1

The molecular structure of (I) (30% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and the possible intramolecular $C-H\cdots O$ interaction is shown as a dashed lines.

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

Figure 2

The packing in (I) projected on to (100), with π - π stacking interactions involving the C13-C18 phenyl rings indicated by dashed lines and all C-H H atoms omitted for clarity (30% displacement ellipsoids).

Experimental

2-Bromobenzene-1,3-diol (Kirsop et al., 2004b; 5.00 g, 0.026 mol), allyl bromide (3.20 g, 0.026 mol) and potassium carbonate (8.00 g, 0.0579 mol) were added to 100 ml of dry acetone. The mixture was stirred at reflux under a nitrogen atmosphere for 3 h. After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil (4.64 g, 78%). Thin-layer chromatography (4:1 hexane–ethyl acetate) showed three sharp spots: at $R_F = 0.24$ was unreacted starting material, at $R_F = 0.38$ was 3-allyloxy-2-bromophenol, and at $R_F = 0.52$ was 1,3-bis(allyloxy)-2-bromobenzene. These compounds were separated using flash column chromatography to give 3-allyloxy-2-bromophenol as a clear oil (1.85 g, 31%). ¹H NMR: δ_H (CDCl₃) 4.58 (2H, d, J = 4.9 Hz, CH₂), 5.30 (1H, d, J = 10.7 Hz, CH), 5.47 (1H, dJ = 17.1 Hz, CH) 5.74 (1H, s, OH), 6.05 (1H, m, CH), 6.45 (1H, d, J = 8.2 Hz, Ar-H), 6.66 (1H, d, J = 9.8 Hz, Ar-H), 7.12 (1H, t, J = 8.2 Hz, Ar-H). ¹³C NMR: δ_C 69.8, 100.6, 105.0, 108.6, 117.8, 128.6, 132.6, 153.6, 155.5. v_{max} (KBr)/cm⁻¹: 3497, 2912, 1595, 1463, 1269, 1192, 1064, 767.

A mixture of 3-allyloxy-2-bromophenol (2.00 g, 0.009 mol), cinnamyl bromide (2.06 g, 0.011 mol) and potassium carbonate (8.0 g, 0.058 mol) was added to dry acetone (100 ml). The mixture was stirred at reflux under a nitrogen atmosphere for 12 h. After cooling, the mixture was filtered and the solvent removed at reduced pressure to give a dark brown oil (1.92 g, 68%). Thin-layer chromatography (4:1 hexane-ethyl acetate) showed 1-allyloxy-2-bromo-3-(3-phenylallyloxy) benzene (I) as a sharp spot at $R_F = 0.33$. The crude product was purified by flash column chromatography to give (I) as a white powder (1.56 g, 51%). A sample of this powder was recrystallized from hot hexane-ethyl acetate (20:1) to give translucent rhombs and slabs (m.p. 353–355 K). ¹H NMR: δ_H (CDCl₃) 4.58 (2H, d, J = 4.1 Hz, CH₂), 4.74 (2H, d, J = 3.9 Hz, CH₂), 5.26 (1H, d, J = 9.6 Hz, CH₂), 5.44 (1H, d, J = 17.0 Hz, CH₂), 6.01–6.08 (1H, m, CH), 6.37–6.41 (1H, m, CH), 6.53 (1H, d, J = 7.0 Hz, Ar-H), 6.58 (1H, d, J = 7.0 Hz, Ar-H), 6.75 (1H, d, J = 9.2 Hz, CH), 7.14 (1H, t, J = 8.1 Hz, CH), 7.23 (1H, d, J = 6.2 Hz, Ar-H), 7.29 (2H, t, J = 8.3 Hz, Ar-H), 7.38 (2H, d, J = 7.2 Hz, Ar-H). ¹³C NMR: δ_C 70.0, 70.1, 102.7, 106.6, 106.7, 117.8, 124.2 (2 C), 126.8, 128.1, 128.2, 128.8 (2 C), 132.9, 133.1, 136.6, 156.6 (2 C). v_{max} (KBr)/cm⁻¹: 1644, 1591, 1470, 1375, 1255, 1116, 1062, 767.

Crystal data

$C_{18}H_{17}BrO_2$	$D_x = 1.435 \text{ Mg m}^{-3}$
$M_r = 345.23$	Mo $K\alpha$ radiation
Aonoclinic, $P2_1/n$	Cell parameters from 3898
a = 7.2956 (4) Å	reflections
• = 14.8719 (8) Å	$\theta = 2.7 - 23.3^{\circ}$
e = 14.7849 (7) Å	$\mu = 2.57 \text{ mm}^{-1}$
$B = 95.171 \ (1)^{\circ}$	T = 293 (2) K
$V = 1597.62 (14) \text{ Å}^3$	Slab, colourless
Z = 4	$0.47 \times 0.32 \times 0.18 \text{ mm}$

Data collection

Bruker SMART1000 CCD	3131 independent reflections
diffractometer	2142 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 1999)	$h = -8 \rightarrow 8$
$T_{\min} = 0.362, \ T_{\max} = 0.628$	$k = -18 \rightarrow 18$
11903 measured reflections	$l = -17 \rightarrow 18$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.058P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.1552P]

$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.1552P]
$wR(F^2) = 0.111$	where $P = (F_o^2 + 2)$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3131 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.35 \mathrm{e}\mathrm{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -Н	H···A	$D \cdots A$	$D - H \cdots A$
C1−H1A…O1	0.93	2.39	2.715 (5)	100

 $=(F_{o}^{2}+2F_{c}^{2})/3$

All the H atoms were positioned geometrically and refined as riding on their carrier C atoms (C-H = 0.93 Å for aromatic and sp^2 hybridized C atoms and C-H = 0.97 Å for sp^3 -hybridized C atoms) with the constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ applied.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

- Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004a). Acta Cryst. E60, o222-0224
- Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2004b). Acta Cryst. C60, 0353-0355.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.